1 |
joko |
1.1 |
#!/usr/bin/env python |
2 |
|
|
|
3 |
joko |
1.2 |
# $Id: boostgraph.py,v 1.1 2008/02/08 09:05:02 joko Exp $ |
4 |
joko |
1.1 |
|
5 |
|
|
# (c) 2008 Andreas Motl <andreas.motl@ilo.de> |
6 |
joko |
1.3 |
# (c) 2008 Sebastian Utz <su@rotamente.com> |
7 |
joko |
1.1 |
|
8 |
|
|
# This program is free software: you can redistribute it and/or modify |
9 |
|
|
# it under the terms of the GNU Affero General Public License as published by |
10 |
|
|
# the Free Software Foundation, either version 3 of the License, or |
11 |
|
|
# (at your option) any later version. |
12 |
|
|
# |
13 |
|
|
# This program is distributed in the hope that it will be useful, |
14 |
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
15 |
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
16 |
|
|
# GNU Affero General Public License for more details. |
17 |
|
|
# |
18 |
|
|
# You should have received a copy of the GNU Affero General Public License |
19 |
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>. |
20 |
|
|
|
21 |
|
|
|
22 |
|
|
|
23 |
|
|
# Uses BGL-Python (depth_first_search) |
24 |
|
|
# |
25 |
|
|
# BGL-Python Homepage: http://osl.iu.edu/~dgregor/bgl-python/ |
26 |
|
|
# |
27 |
joko |
1.2 |
# Documentation (Boost): |
28 |
|
|
# - http://www.boost.org/libs/graph/doc/graph_theory_review.html |
29 |
|
|
# - http://www.boost.org/libs/graph/doc/depth_first_search.html |
30 |
|
|
# - http://www.boost.org/boost/graph/depth_first_search.hpp |
31 |
|
|
# - http://www.boost.org/libs/graph/doc/DFSVisitor.html |
32 |
|
|
# - http://www.boost.org/libs/graph/example/dfs-example.cpp |
33 |
|
|
# |
34 |
|
|
# Documentation (BGL-Python): |
35 |
joko |
1.1 |
# - http://osl.iu.edu/~dgregor/bgl-python/reference/boost.graph.html |
36 |
|
|
# |
37 |
|
|
# Subversion-Repository: https://svn.osl.iu.edu/svn/projects_viz/bgl-python/ |
38 |
|
|
|
39 |
|
|
|
40 |
joko |
1.3 |
RANDOM_MAX_NODES = 10 |
41 |
|
|
RANDOM_MAX_CHILDREN_PER_NODE = 500 |
42 |
|
|
MAX_SEARCH_DEPTH = 50 |
43 |
|
|
|
44 |
|
|
|
45 |
|
|
ENABLE_PROFILING = False |
46 |
|
|
|
47 |
|
|
if ENABLE_PROFILING: |
48 |
|
|
import profile |
49 |
|
|
from profile import Profile |
50 |
|
|
|
51 |
|
|
|
52 |
joko |
1.1 |
import sys, os |
53 |
joko |
1.3 |
import random |
54 |
joko |
1.1 |
|
55 |
|
|
sys.path.append('bgl_python') |
56 |
|
|
os.environ['PATH'] += ';' + './bgl_python' |
57 |
|
|
|
58 |
|
|
import boost.graph as bgl |
59 |
|
|
|
60 |
|
|
|
61 |
|
|
|
62 |
|
|
# from http://www.boost.org/libs/graph/doc/DFSVisitor.html |
63 |
|
|
class tree_edges_dfs_visitor(bgl.dfs_visitor): |
64 |
joko |
1.3 |
#class tree_edges_bfs_visitor(bgl.bfs_visitor): |
65 |
joko |
1.1 |
|
66 |
joko |
1.3 |
def __init__(self, maxdepth, name_map, color_map): |
67 |
|
|
|
68 |
|
|
print dir(self) |
69 |
|
|
|
70 |
joko |
1.1 |
#bgl.dfs_visitor.__init__(self) |
71 |
|
|
self.name_map = name_map |
72 |
joko |
1.2 |
|
73 |
|
|
# for recognizing path switches |
74 |
joko |
1.1 |
self.state = True |
75 |
joko |
1.2 |
|
76 |
|
|
# for tracking paths |
77 |
|
|
self.paths = [] |
78 |
|
|
self.current_path = [] |
79 |
joko |
1.3 |
|
80 |
|
|
# for limiting search depth |
81 |
|
|
""" |
82 |
|
|
self.color_map = color_map |
83 |
|
|
self.maxdepth = maxdepth |
84 |
|
|
self.depth = 0 |
85 |
|
|
""" |
86 |
|
|
|
87 |
|
|
self.level = 0 |
88 |
|
|
|
89 |
|
|
|
90 |
|
|
def examine_edge(self, e, g): |
91 |
|
|
self.tree_edge2(e, g, 'examine_edge') |
92 |
joko |
1.1 |
|
93 |
joko |
1.3 |
def tree_edge2(self, e, g, label='tree_edge'): |
94 |
|
|
|
95 |
joko |
1.1 |
(u, v) = (g.source(e), g.target(e)) |
96 |
joko |
1.3 |
|
97 |
|
|
# increase current search depth (level) |
98 |
|
|
""" |
99 |
|
|
self.depth += 1 |
100 |
|
|
|
101 |
|
|
# check if maximum depth reached |
102 |
|
|
if self.depth == self.maxdepth: |
103 |
|
|
# color all succeeding vertices to black (mark as "already visited") |
104 |
|
|
# BUG!!! marks too many nodes |
105 |
|
|
for child_edge in g.out_edges(v): |
106 |
|
|
end_vertex = g.target(child_edge) |
107 |
|
|
#self.color_map[end_vertex] = bgl.Color(bgl.Color.gray) |
108 |
|
|
""" |
109 |
|
|
|
110 |
|
|
|
111 |
|
|
if label: |
112 |
|
|
print "%s:" % label, |
113 |
joko |
1.1 |
print "Tree edge ", |
114 |
|
|
print self.name_map[u], |
115 |
|
|
print " -> ", |
116 |
|
|
print self.name_map[v] |
117 |
joko |
1.3 |
sys.stdout.flush() |
118 |
joko |
1.1 |
self.state = True |
119 |
joko |
1.2 |
self.current_path.append(e) |
120 |
|
|
#return False |
121 |
joko |
1.1 |
|
122 |
|
|
def start_vertex(self, v, g): |
123 |
joko |
1.3 |
self._seperator('start_vertex') |
124 |
|
|
#pass |
125 |
joko |
1.1 |
#print 'sssss' |
126 |
|
|
|
127 |
joko |
1.3 |
|
128 |
|
|
def discover_vertex(self, v, g): |
129 |
|
|
#print '>>>' |
130 |
|
|
self._seperator('discover_vertex') |
131 |
|
|
#pass |
132 |
|
|
|
133 |
joko |
1.1 |
def initialize_vertex(self, v, g): |
134 |
|
|
#print '>>>' |
135 |
joko |
1.2 |
self._seperator('initialize_vertex') |
136 |
joko |
1.1 |
|
137 |
joko |
1.3 |
def examine_vertex(self, v, g): |
138 |
|
|
self._seperator('examine_vertex') |
139 |
|
|
|
140 |
joko |
1.1 |
def finish_vertex(self, v, g): |
141 |
|
|
#print '<<<' |
142 |
joko |
1.2 |
if self.current_path: |
143 |
|
|
self.paths.append(self.current_path) |
144 |
|
|
self.current_path = [] |
145 |
joko |
1.3 |
self.depth = 0 |
146 |
joko |
1.2 |
self._seperator('finish_vertex') |
147 |
joko |
1.1 |
|
148 |
joko |
1.2 |
def _seperator(self, label = 'unknown'): |
149 |
joko |
1.3 |
if 1 or self.state: |
150 |
joko |
1.2 |
print '-' * 21, label |
151 |
joko |
1.1 |
self.state = False |
152 |
|
|
|
153 |
joko |
1.2 |
|
154 |
joko |
1.1 |
def build_fixed_graph(): |
155 |
joko |
1.2 |
|
156 |
joko |
1.1 |
graph = bgl.Graph() |
157 |
joko |
1.2 |
index = {} |
158 |
joko |
1.1 |
|
159 |
joko |
1.2 |
# doesn't this work? see http://www.nabble.com/-Graph--Getting-PageRank-to-work-in-BGL-Python-td14207115.html |
160 |
joko |
1.1 |
#graph.add_vertex_property_map(name='my_name', type='float') |
161 |
|
|
|
162 |
|
|
# 'write_graphviz' requires property 'node_id' on vertices |
163 |
|
|
# see http://lists.boost.org/boost-users/2006/06/19877.php |
164 |
|
|
vmap = graph.vertex_property_map('string') |
165 |
|
|
graph.vertex_properties['node_id'] = vmap |
166 |
|
|
|
167 |
|
|
|
168 |
|
|
v1 = graph.add_vertex() |
169 |
|
|
vmap[v1] = '1' |
170 |
joko |
1.2 |
index['1'] = v1 |
171 |
joko |
1.1 |
|
172 |
|
|
v2 = graph.add_vertex() |
173 |
|
|
vmap[v2] = '2' |
174 |
joko |
1.2 |
index['2'] = v2 |
175 |
joko |
1.1 |
|
176 |
|
|
v3 = graph.add_vertex() |
177 |
|
|
vmap[v3] = '3' |
178 |
joko |
1.2 |
index['3'] = v3 |
179 |
joko |
1.1 |
|
180 |
|
|
v4 = graph.add_vertex() |
181 |
|
|
vmap[v4] = '4' |
182 |
joko |
1.2 |
index['4'] = v4 |
183 |
joko |
1.1 |
|
184 |
|
|
e1 = graph.add_edge(v1, v2) |
185 |
|
|
e2 = graph.add_edge(v1, v3) |
186 |
|
|
e3 = graph.add_edge(v3, v4) |
187 |
joko |
1.3 |
|
188 |
|
|
e4 = graph.add_edge(v1, v4) |
189 |
|
|
#e5 = graph.add_edge(v3, v2) |
190 |
|
|
#e6 = graph.add_edge(v2, v4) |
191 |
joko |
1.1 |
|
192 |
|
|
""" |
193 |
|
|
for vertex in graph.vertices: |
194 |
|
|
#print vertex.id, vertex |
195 |
|
|
print vmap[vertex], vertex |
196 |
|
|
#print vertex.__getattribute__('id') |
197 |
|
|
#print vertex['id'] |
198 |
|
|
#print vertex.get('id') |
199 |
|
|
#print |
200 |
|
|
""" |
201 |
|
|
|
202 |
|
|
graph.write_graphviz('friends.dot') |
203 |
|
|
|
204 |
joko |
1.2 |
return (graph, index) |
205 |
joko |
1.1 |
|
206 |
|
|
|
207 |
joko |
1.3 |
def build_random_graph(): |
208 |
|
|
|
209 |
|
|
graph = bgl.Graph() |
210 |
|
|
index = {} |
211 |
|
|
|
212 |
|
|
vmap = graph.vertex_property_map('string') |
213 |
|
|
graph.vertex_properties['node_id'] = vmap |
214 |
|
|
|
215 |
|
|
count = 0 |
216 |
|
|
for parent_id in range(1, RANDOM_MAX_NODES + 1): |
217 |
|
|
count += 1 |
218 |
|
|
if count % 100 == 0: |
219 |
|
|
sys.stderr.write('.') |
220 |
|
|
|
221 |
|
|
parent_id_str = str(parent_id) |
222 |
|
|
v1New = False |
223 |
|
|
if not index.has_key(parent_id_str): |
224 |
|
|
#print "adding v1:", parent_id_str |
225 |
|
|
myVertex1 = graph.add_vertex() |
226 |
|
|
vmap[myVertex1] = parent_id_str |
227 |
|
|
index[parent_id_str] = myVertex1 |
228 |
|
|
v1New = True |
229 |
|
|
|
230 |
|
|
|
231 |
|
|
count = 0 |
232 |
|
|
#for j in range(1, random.randint(1, RANDOM_MAX_CHILDREN_PER_NODE)): |
233 |
|
|
for j in range(1, RANDOM_MAX_CHILDREN_PER_NODE): |
234 |
|
|
|
235 |
|
|
count += 1 |
236 |
|
|
if count % 100 == 0: |
237 |
|
|
sys.stderr.write('.') |
238 |
|
|
|
239 |
|
|
parent_id_str = random.choice(index.keys()) |
240 |
|
|
|
241 |
|
|
child_id_str = parent_id_str |
242 |
|
|
while child_id_str == parent_id_str: |
243 |
|
|
child_id_str = random.choice(index.keys()) |
244 |
|
|
#print child_id_str |
245 |
|
|
|
246 |
|
|
myVertex1 = index[parent_id_str] |
247 |
|
|
myVertex2 = index[child_id_str] |
248 |
|
|
|
249 |
|
|
graph.add_edge(myVertex1, myVertex2) |
250 |
|
|
|
251 |
|
|
sys.stderr.write("\n") |
252 |
|
|
|
253 |
|
|
return (graph, index) |
254 |
|
|
|
255 |
|
|
|
256 |
|
|
def dump_track(graph, track): |
257 |
|
|
track_ids = [] |
258 |
|
|
for node in track: |
259 |
|
|
node_id = graph.vertex_properties['node_id'][node] |
260 |
|
|
track_ids.append(node_id) |
261 |
|
|
|
262 |
|
|
print ' -> '.join(track_ids) |
263 |
joko |
1.1 |
|
264 |
joko |
1.2 |
def find_path_solutions(source, target, graph, paths): |
265 |
|
|
|
266 |
|
|
print |
267 |
|
|
print "=" * 42 |
268 |
|
|
print "find_path_solutions" |
269 |
|
|
print "=" * 42 |
270 |
|
|
|
271 |
|
|
#print visitor.paths |
272 |
|
|
#(u, v) = (g.source(e), g.target(e)) |
273 |
|
|
for path in paths: |
274 |
|
|
startVertex = graph.source(path[0]) |
275 |
joko |
1.3 |
|
276 |
|
|
track = [] |
277 |
|
|
track.append(startVertex) |
278 |
|
|
|
279 |
|
|
for edge in path: |
280 |
|
|
endVertex = graph.target(edge) |
281 |
|
|
track.append(endVertex) |
282 |
|
|
if source == startVertex and target == endVertex: |
283 |
|
|
#print "found:", track |
284 |
|
|
dump_track(graph, track) |
285 |
|
|
|
286 |
|
|
def dump_graph(graph): |
287 |
|
|
for edge in graph.edges: |
288 |
|
|
(u, v) = (graph.source(edge), graph.target(edge)) |
289 |
|
|
startIndex = graph.vertex_properties['node_id'][u] |
290 |
|
|
endIndex = graph.vertex_properties['node_id'][v] |
291 |
|
|
print "%s -> %s" % (startIndex, endIndex) |
292 |
|
|
|
293 |
joko |
1.2 |
|
294 |
joko |
1.1 |
def main(): |
295 |
|
|
|
296 |
|
|
# Load a graph from the GraphViz file 'mst.dot' |
297 |
|
|
#graph = bgl.Graph.read_graphviz('mst.dot') |
298 |
joko |
1.2 |
(graph, index) = build_fixed_graph() |
299 |
joko |
1.3 |
#(graph, index) = build_random_graph() |
300 |
|
|
|
301 |
|
|
#dump_graph(graph) |
302 |
joko |
1.1 |
|
303 |
|
|
# Compute all paths rooted from each vertex |
304 |
|
|
#mst_edges = bgl.kruskal_minimum_spanning_tree(graph, weight) |
305 |
|
|
#bgl.depth_first_search(graph, root_vertex = None, visitor = None, color_map = None) |
306 |
joko |
1.3 |
|
307 |
joko |
1.1 |
for root in graph.vertices: |
308 |
|
|
print |
309 |
|
|
print '=' * 42 |
310 |
|
|
print 'Paths originating from node %s' % graph.vertex_properties['node_id'][root] |
311 |
joko |
1.3 |
#cmap = graph.vertex_property_map('color') |
312 |
|
|
cmap = None |
313 |
|
|
visitor = tree_edges_dfs_visitor(3, graph.vertex_properties['node_id'], cmap) |
314 |
|
|
#visitor = tree_edges_bfs_visitor(3, graph.vertex_properties['node_id'], cmap) |
315 |
joko |
1.1 |
bgl.depth_first_search(graph, root_vertex = root, visitor = visitor, color_map = None) |
316 |
joko |
1.3 |
#bgl.breadth_first_search(graph, root_vertex = root, visitor = visitor, color_map = None) |
317 |
|
|
#find_path_solutions(index['1'], index['4'], graph, visitor.paths) |
318 |
|
|
#sys.exit(0) |
319 |
|
|
|
320 |
|
|
startIndex = random.choice(index.keys()) |
321 |
|
|
endIndex = random.choice(index.keys()) |
322 |
|
|
startIndex = '1' |
323 |
|
|
endIndex = '4' |
324 |
|
|
|
325 |
|
|
print "Trying to find solution for: %s -> %s" % (startIndex, endIndex) |
326 |
|
|
|
327 |
|
|
startVertex = index[startIndex] |
328 |
|
|
endVertex = index[endIndex] |
329 |
|
|
|
330 |
|
|
def doCompute(): |
331 |
|
|
cmap = graph.vertex_property_map('color') |
332 |
|
|
visitor = tree_edges_dfs_visitor(MAX_SEARCH_DEPTH, graph.vertex_properties['node_id'], cmap) |
333 |
|
|
bgl.depth_first_search(graph, root_vertex = startVertex, visitor = visitor, color_map = None) |
334 |
|
|
#bgl.depth_first_visit(graph, root_vertex = startVertex, visitor = visitor, color_map = cmap) |
335 |
|
|
find_path_solutions(startVertex, endVertex, graph, visitor.paths) |
336 |
|
|
|
337 |
|
|
if ENABLE_PROFILING: |
338 |
|
|
global paths |
339 |
|
|
paths = [] |
340 |
|
|
p = Profile() |
341 |
|
|
p.runcall(doCompute) |
342 |
|
|
p.print_stats() |
343 |
|
|
else: |
344 |
|
|
paths = doCompute() |
345 |
|
|
|
346 |
joko |
1.1 |
|
347 |
|
|
# STOP HERE |
348 |
|
|
sys.exit(0) |
349 |
|
|
|
350 |
|
|
|
351 |
|
|
|
352 |
|
|
|
353 |
|
|
|
354 |
|
|
# Compute the weight of the minimum spanning tree |
355 |
|
|
#print 'MST weight =',sum([weight[e] for e in mst_edges]) |
356 |
|
|
|
357 |
|
|
# Put the weights into the label. Make MST edges solid while all other |
358 |
|
|
# edges remain dashed. |
359 |
|
|
label = graph.edge_property_map('string') |
360 |
|
|
style = graph.edge_property_map('string') |
361 |
|
|
for e in graph.edges: |
362 |
|
|
label[e] = str(weight[e]) |
363 |
|
|
if e in mst_edges: |
364 |
|
|
style[e] = 'solid' |
365 |
|
|
else: |
366 |
|
|
style[e] = 'dashed' |
367 |
|
|
|
368 |
|
|
# Associate the label and style property maps with the graph for output |
369 |
|
|
graph.edge_properties['label'] = label |
370 |
|
|
graph.edge_properties['style'] = style |
371 |
|
|
|
372 |
|
|
# Write out the graph in GraphViz DOT format |
373 |
|
|
graph.write_graphviz('friends_path_2to3.dot') |
374 |
|
|
|
375 |
|
|
|
376 |
|
|
if __name__ == '__main__': |
377 |
|
|
main() |