1 |
joko |
1.1 |
#!/usr/bin/env python |
2 |
|
|
|
3 |
joko |
1.5 |
# $Id: sixtest.py,v 1.4 2008/02/06 03:14:58 joko Exp $ |
4 |
joko |
1.1 |
|
5 |
|
|
# (c) 2008 Andreas Motl <andreas.motl@ilo.de> |
6 |
|
|
|
7 |
|
|
# This program is free software: you can redistribute it and/or modify |
8 |
|
|
# it under the terms of the GNU Affero General Public License as published by |
9 |
|
|
# the Free Software Foundation, either version 3 of the License, or |
10 |
|
|
# (at your option) any later version. |
11 |
|
|
# |
12 |
|
|
# This program is distributed in the hope that it will be useful, |
13 |
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 |
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
15 |
joko |
1.2 |
# GNU Affero General Public License for more details. |
16 |
joko |
1.1 |
# |
17 |
|
|
# You should have received a copy of the GNU Affero General Public License |
18 |
|
|
# along with this program. If not, see <http://www.gnu.org/licenses/>. |
19 |
|
|
|
20 |
|
|
|
21 |
joko |
1.5 |
import sys |
22 |
joko |
1.1 |
import random |
23 |
|
|
from sixdegrees import Graph, Node |
24 |
|
|
|
25 |
|
|
|
26 |
|
|
# maximum search depth (DLS limiter) |
27 |
joko |
1.5 |
MAX_SEARCH_DEPTH = 4 |
28 |
joko |
1.1 |
|
29 |
|
|
# settings for random graph |
30 |
joko |
1.5 |
#RANDOM_MAX_NODES = 10 |
31 |
|
|
#RANDOM_MAX_CHILDREN_PER_NODE = 5 |
32 |
|
|
RANDOM_MAX_NODES = 10000 |
33 |
|
|
RANDOM_MAX_CHILDREN_PER_NODE = 20 |
34 |
|
|
|
35 |
|
|
|
36 |
|
|
ENABLE_PROFILING = False |
37 |
|
|
ENABLE_JIT = True |
38 |
|
|
|
39 |
|
|
|
40 |
|
|
if ENABLE_PROFILING: |
41 |
|
|
import profile |
42 |
|
|
from profile import Profile |
43 |
joko |
1.1 |
|
44 |
|
|
|
45 |
|
|
def operateOnFixedGraph(): |
46 |
|
|
|
47 |
|
|
# 1. create fixed graph (for testing) |
48 |
|
|
# 4: 6, 10 |
49 |
|
|
# 5: 6, 9 |
50 |
|
|
# 6: 5, 4 |
51 |
|
|
print '-' * 42 |
52 |
|
|
print ' Generating fixed graph' |
53 |
|
|
print '-' * 42 |
54 |
|
|
graph = Graph() |
55 |
|
|
graph.addRelation(4, 6) |
56 |
|
|
graph.addRelation(4, 10) |
57 |
|
|
graph.addRelation(5, 6) |
58 |
|
|
graph.addRelation(5, 9) |
59 |
|
|
graph.addRelation(6, 5) |
60 |
|
|
graph.addRelation(6, 4) |
61 |
|
|
print graph |
62 |
|
|
|
63 |
|
|
# 2. choose two fixed nodes (for testing) |
64 |
|
|
node1 = graph.getNode(4) |
65 |
|
|
node2 = graph.getNode(5) |
66 |
|
|
|
67 |
|
|
findAllPaths(graph, node1, node2) |
68 |
|
|
|
69 |
|
|
|
70 |
|
|
def buildRandomGraph(graph): |
71 |
|
|
|
72 |
joko |
1.5 |
count = 0 |
73 |
joko |
1.1 |
for parent_id in range(1, RANDOM_MAX_NODES + 1): |
74 |
joko |
1.5 |
count += 1 |
75 |
|
|
if count % 100 == 0: |
76 |
|
|
sys.stderr.write('.') |
77 |
joko |
1.1 |
for j in range(1, random.randint(1, RANDOM_MAX_CHILDREN_PER_NODE)): |
78 |
|
|
child_id = random.randint(1, RANDOM_MAX_NODES) |
79 |
|
|
graph.addRelation(parent_id, child_id) |
80 |
joko |
1.5 |
sys.stderr.write("\n") |
81 |
joko |
1.1 |
|
82 |
|
|
""" |
83 |
|
|
RANDOM_MAX_NODES = 10 |
84 |
|
|
for i in range(1, RANDOM_MAX_NODES + 1): |
85 |
|
|
parent_id = random.randint(1, RANDOM_MAX_NODES) |
86 |
|
|
child_id = random.randint(1, RANDOM_MAX_NODES) |
87 |
|
|
graph.addRelation(parent_id, child_id) |
88 |
|
|
""" |
89 |
|
|
|
90 |
|
|
def operateOnRandomGraph(): |
91 |
|
|
|
92 |
|
|
# 1. create random graph |
93 |
|
|
print '-' * 42 |
94 |
|
|
print ' Generating random graph' |
95 |
|
|
print '-' * 42 |
96 |
|
|
graph = Graph() |
97 |
|
|
buildRandomGraph(graph) |
98 |
joko |
1.5 |
#print graph |
99 |
joko |
1.1 |
|
100 |
|
|
# 2. choose two random distinct nodes |
101 |
|
|
node1 = graph.getNode(random.choice(graph.index.keys())) |
102 |
|
|
node2 = node1 |
103 |
|
|
while node1 is node2: |
104 |
|
|
node2 = graph.getNode(random.choice(graph.index.keys())) |
105 |
|
|
|
106 |
|
|
findAllPaths(graph, node1, node2) |
107 |
|
|
|
108 |
|
|
|
109 |
|
|
def findAllPaths(graph, source_node, target_node): |
110 |
|
|
|
111 |
|
|
# 1. calculate paths |
112 |
|
|
print '-' * 42 |
113 |
joko |
1.4 |
print " Finding paths from %s to %s (depth=%s)" % (source_node.id, target_node.id, MAX_SEARCH_DEPTH) |
114 |
joko |
1.5 |
print " Using JIT (Psyco):", bool(sys.modules.get('psyco')) |
115 |
joko |
1.1 |
print '-' * 42 |
116 |
joko |
1.5 |
|
117 |
|
|
""" |
118 |
|
|
def doCompute(): |
119 |
|
|
#global paths |
120 |
|
|
paths = graph.computePaths(source_node, target_node, MAX_SEARCH_DEPTH) |
121 |
|
|
return paths |
122 |
|
|
""" |
123 |
|
|
|
124 |
|
|
if ENABLE_PROFILING: |
125 |
|
|
global paths |
126 |
|
|
paths = [] |
127 |
|
|
p = Profile() |
128 |
|
|
p.runcall(doCompute) |
129 |
|
|
p.print_stats() |
130 |
|
|
else: |
131 |
|
|
paths = graph.computePaths(source_node, target_node, MAX_SEARCH_DEPTH) |
132 |
|
|
|
133 |
|
|
#p.create_stats() |
134 |
|
|
#a = p.dump_stats() |
135 |
|
|
#print a |
136 |
|
|
#print dir(p) |
137 |
|
|
#for key, value in p.timings.iteritems(): |
138 |
|
|
# print '%s: %s' % (key, value) |
139 |
joko |
1.1 |
|
140 |
|
|
# 2. output paths |
141 |
|
|
#print paths |
142 |
|
|
for path in paths: |
143 |
|
|
id_list = [] |
144 |
|
|
for node in path: |
145 |
|
|
id_list.append(str(node.id)) |
146 |
|
|
print ' -> '.join(id_list) |
147 |
|
|
#print '-' * 21 |
148 |
|
|
|
149 |
|
|
|
150 |
|
|
def main(): |
151 |
|
|
#operateOnFixedGraph() |
152 |
|
|
operateOnRandomGraph() |
153 |
|
|
|
154 |
|
|
|
155 |
|
|
if __name__ == '__main__': |
156 |
joko |
1.5 |
if ENABLE_JIT: |
157 |
|
|
# Import Psyco if available |
158 |
|
|
try: |
159 |
|
|
import psyco |
160 |
|
|
psyco.log() |
161 |
|
|
psyco.full() |
162 |
|
|
except ImportError: |
163 |
|
|
pass |
164 |
joko |
1.1 |
main() |